
PHYSICAL REVIEW E, VOLUME 64, 021103
Aging and self-organized criticality in driven dissipative systems
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We study the noisy dynamics of a close relative to the original sandpile model. Depending on the type of
noise and the time scale of observation, we find stationary fluctuations~similar to self-organized criticality! or
an aging dynamics with punctuated equilibria, a decreasing rate of events and reset properties qualitatively
similar to those of glassy systems, evolution models, and vibrated granular media.
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I. INTRODUCTION

The ‘‘pulse-duration memory effect’’ observed@1# in slid-
ing charge density wave systems was explained by Cop
smith and Littlewood@2# using a microscopic nonlinear
model of interacting degrees of freedom with a huge num
of dynamically inequivalent attractors. Related work
Tang, Wiesenfeld, Bak, Coppersmith, and Littlewood@3#
~henceforth TWBCL!, emphasized that the relatively ra
minimally stableattractors of this model are nonethele
those preferably selected by the dynamics. The sand
model and the idea of self-organized criticality~SOC! then
evolved@4# from the analysis of the TWBCL model, with it
poised statebeing conceptually similar to a minimally stab
state. A sand pile@5# reacts to small disturbances by releasi
avalanches with a broad distribution of sizes, returning th
to its poised state described by the angle of repose.

While SOC deals with thestationaryfluctuations of ex-
tended systems, a wide class of systems is manifestedly
stationary, since the relevantmacroscopicvariables slowly
change in time at adeceleratingrate. This implies a depen
dence of the data on the initial time and hence on theageof
the system. Relevant examples are spin glasses@6–8#, the
evolution of bacterial cultures@9#, evolution in rugged fitness
landscapes@10–12#, macro-evolution@13,14#, granular sys-
tems@15,16#, and Lennard-Jones glasses@17#. In spin glasses
and glasses, aging behavior is usually analyzed in term
functions with two time arguments as, e.g., magnetic co
lations and linear response. Since at ‘‘short’’ timest,tw
these fulfill the fluctuation dissipation theorem~FDT!, one
can infer that the system performs equilibrium-like fluctu
tions in this regime@18#. For t.tw the FDT is broken and the
nonstationary nature of the dynamics becomes apparent
timately linked to nonstationarity is the reset capability
aging systems, i.e., the possibility of enhancing the rate
relaxation, thus ‘‘resetting’’ the system’s apparent age t
smaller value by tweaking parameters such as, e.g., temp
ture and/or magnetic field@6–8#.

Below we use the TWBCL model, whose attractors a
explicitly known, for a case study of the aging of nontherm
systems with multiple metastability. Being particularly inte
ested in the connection between the coarse grained dyna
and the attractor structure, we find it convenient to consi
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the presence of two dynamical regimes, pseudostationary
t,tw and nonstationary fort.tw , together with the rese
capability as the central properties of aging dynamics. Th
properties are shared by spin glasses and glasses, but n
e.g., the Bak-Sneppen@19# evolution model, whose macro
scopic variable~the average fitness! remains constant in
time. Nonetheless, this model has other interesting age
pendent properties, as discussed in Ref.@20#.

II. THE TWBCL MODEL

In spite of its out most simplicity, the TWBCL model with
added noise has interesting aging properties: The rele
macroscopic average, here called the degree of phase
nization ixi , remains nearly constant on scalest,tw , and
the noise induced fluctuations are avalanches@SOC-like in
two dimensions~2D!#. For t.tw a logarithmic decrease o
ixi becomes apparent, revealing that the attractors vis
become more stable as the system ages. The decay ofixi can
be reset by a change of the elastic constant, whereby
system is rejuvenated. All this behavior can approximat
be accounted for by a mechanism previously dubbed@21#
noise adaptation, which is also present in the dynamics
populations evolving in the rugged landscape of the N
model @10#.

ConsiderM ‘‘balls’’ arranged in an array~linear or square!
and coupled to their neighbors via springs with elastic c
stantK. The balls are subject to friction, to a force with
sinusoidal spatial variation, and to a series of square pu
of amplitudeE. In the limit of high damping, large field, and
weak elastic coupling, the key dynamical features are c
tured by the simple update rule@2# reproduced below~with
1D notation!:

zj~ t !5yj~ t !1KD„y~ t !…j1E1Nj~ t !,

yj~ t11!5nint„zj~ t !…. ~1!

Here,t is the time in units of field cycles,zj is the coordinate
of the j th ball, D is the lattice Laplacian, nint(z) stands for
the integer nearest toz, andNj is the noise applied at sitej.

For N50, integer valuedE and free or periodic boundar
conditions, the attractor states of Eq.~1! satisfy @3#
nint(Kc)50, wherec5Dy is the curvature vector. The cor
responding coordinates then fulfill
©2001 The American Physical Society03-1
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2
<Kcj,

1

2
j 51, . . . ,M . ~2!

The attractors@22# thus lie within anattractor hypercubeof
side length 1/K centered at the origin. Their number
O(1/KM), which is huge when, for example,M'200 and
K50.05.

Noiseless relaxation of an initial state generally leads t
phase organized state@3#, i.e., a state located at the corne
of the attractor hypercube. Such state isminimally stable
against external perturbations, as it barely fulfills Eq.~2!.
The averageixi5M 21( i

Muxi u is always defined and gauge
for attractors, the degree of~meta! stability ixi , or, equiva-
lently, the depth d51/22ixi . Minimally stable attractors
haved'0.

Noisy relaxation properties

We always start the noisy dynamics at a phase organ
state selected under noiseless conditions, and denote the
elapsed under the influence of noise bytw , the age of the
system. As we anticipated, the evolution has a first~pseudo!
stationary phase involving fluctuations among metasta
states of the same depth. On longer time scales the ave
depth of the attractors visited increases logarithmica
through a series of jumps, also denotedmacroscopic events
or punctuations. Crucially, tw demarks the boundary betwee
short and long time dynamics. As shown by Fig. 1, our m
roscopic averageixi decreases in a logarithmic fashio
apart from a superimposed oscillation that is most clea
visible for small noise amplitudes. Letc be the logarithmic
slope of ixi , which is shown in the second panel of Fig.
and assume that the observation window extends fromtw to
t1tw . Since ln(t1tw)5ln(tw)1ln(11t/tw), it follows that

FIG. 1. Aging in a 100031 model with K50.05, randomly
perturbed by white noise with exponentially distributed magnitu
of a. Each curve in the left panel belongs to a different value oa
and is the average over ten independent trajectories, starting
the same minimally stable state. After a short transient, the dec
logarithmic~with a superimposed oscillation!. In the right panel, the
logarithmic slopes are shown vsa. A line of unit slope is included to
guide the eye.
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ixi~ t1tw!'ixi~ tw!2c ln~11t/tw!. ~3!

Considering that ln(11t/tw)'t/tw and thatc!1, we see that
ixi does not change appreciably as long ast/tw,1. Hence,
the dynamics appears stationary fort,tw , as claimed.

We can reach the same conclusion by a second argum
which will help us to connect with the landscape structure
the problem: By definition, consecutive macroscopic eve
always delimit the observation window during which the d
namics appears as stationary. Second, as we will show l
the residence timet r characterizing the attractors that are fir
visited at timetw fulfills ~within an order of magnitude!

t r'tw . ~4!

Hence the dynamics appears stationary within the intervt
,t r'tw . Interestingly, Eq.~4! constitutes the main assump
tion of weakly broken ergodicity@24#, a widely used scenario
for complex system relaxation. The same equation also
scribes a property of diffusion onhierarchical tree models
@23,25,26#, models that reproduce many features of glas
relaxation.

Figure 2 illustrates the nature of the ‘‘short time’’ ava
lanche dynamics. The noise used to produce the data con
of a series of ‘‘kicks’’ of either sign, simultaneously applie
to each ‘‘ball’’ and independently drawn from an exponent
distribution with averagea.

Relaxation to a fixed point is allowed between conse
tive perturbations, and the avalanches consist of sets of
tiguous ‘‘balls’’ simultaneously in motion. Their sizes ar
defined as the largest number of participating balls. Both s
and duration are exponentially distributed in 1D, and pow
law distributed in 2D, as expected@27#. The main message o

e

m
is

FIG. 2. Broad, power-law-like distributions are observed f
both avalanche sizes~left panel! and durations in a 30330 model
with K50.05. The system is subject to noise pulses drawn from
exponential distribution with averagea50.01 and the avalanche
are monitored through 100 perturbation/relaxation cycles startin
three different agestw . The age is here the total number of cycl
the system has undergone before sampling the statistics. Astw in-
creases the avalanches become smaller and shorter.
3-2
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Fig. 2 is simply that avalanches are larger and last longe
a young system~upper curve! than in an aged one~lower
curve!. This is a further indication of decelerating dynamic

Pulsed noise can model systems where the typical a
lanche duration and the length of the noiseless periods
well separated@28#. To bypass this restriction we now app
the noise ‘‘continuously,’’ i.e., at each time step. The coa
grained time evolution in state space can then be followed
monitoring ixi(tw).

FIG. 3. Changing the elastic constant fromK50.03 to
K50.05 and again toK50.07 produces the ‘‘resets’’ seen at time
23103 and 23104. The data are averages over 20 different traj
tories of a linear array of 1000 ‘‘balls.’’ The noise magnitude
exponentially distributed with averagea50.015.

FIG. 4. A 100031 model withK50.05 is perturbed through a
few thousand updates by noise of bounded variation@2a,a# and
then allowed to fully relax, reaching theixi values that are plotted
~as stars! vs a for five independent noise sequences. In addition,
line y50.452a is drawn as a guide to the eye. Sinceixi decreases
almost proportionally toa, the least stableamong the attractors
surviving the noise are those dynamically selected with high pr
ability.
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Averaging suppresses all fast fluctuations together w
the spatial information, andixi(tw) therefore consists o
constant plateaus, punctuated by rapid changes. T
mainly lead to deeper attractors and stand out asthe coarse
grained dynamical events on long time scales.

Complementary information is obtained by averagingixi
over independent noise histories. The resulting smooth fu
tion, ^ixi&(tw) was studied for both 1D and 2D system
using pulsed as well as continuous noise. Since^ixi& is
rather insensitive to the dimension, we mainly studied it
1D models, which are faster to simulate. The left panel
Fig. 1 shows the time evolution of̂ixi&(tw) for different
values of the noise magnitudea. The negative logarithmic
slope of the plots has a linear relationship to the amplituda
that is shown in the right panel of the same figure.

The age reset is induced in our model by changing
elastic constant, which is analogous to changing the m
netic field @29# in spin glass systems. IncreasingK reduces
the size of the attractor hypercube and concomitantly redu
the depth of the current state. As a consequence^ixi&(tw) is
reset to an earlier~and larger! value, as shown in Fig. 3
DecreasingK has the effect of swelling the attractor hype
cube whencêixi& quickly drops.

To further clarify the connection between the reset eff
and the attractor geometry, we considerbounded noise@21#
drawn from a uniform distribution supported in the fini
interval @2a,a#. Equation~1! then implies that only state
fulfilling maxj$1/22uxj u%.a survive asexactfixed points of
the equations of motion. The corner states of an attra
hypercube of side length (122a)/K are still minimally

-

e

-

FIG. 5. An array of 1000 ‘‘balls’’ with elastic constan
K50.05 is perturbed by noise ‘‘kicks’’ of random sign and magn
tude exponentially distributed with averagea50.015. The noise is
uncorrelated in time and space. We considered 200 indepen
trajectories, all starting from the same minimally stable state.
‘‘event’’ is defined as the achievement of a state of lowerixi . A and
B: average and variance of the number of events observed w
time tw . C: autocorrelation functionCD(k) of the log-waiting times
Dk5 ln(tk /tk21). D: distribution of theDk .
3-3
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stable, in the generalized sense that any infinitesimalin-
creaseof the noise amplitude destroys their stability. Figu
4 demonstrates that a perturbation of magnitudea perma-
nently leaves the system in an attractor of depth'0.452a.
Hence the minimally stable states are dynamically selec

For exponentially distributed noise of average magnitu
a and on a time scaletw , the kicks normally fall within the
ranger t'a ln tw . Hence we expect that the trajectories w
typically be located at the corners of a hypercube of s
length 2̂ ixi&'(122a ln tw). This is in reasonable agree
ment with the behavior depicted in the right panel of Fig
and explains why even a modest shrinking of hypercube p
duces a sizable reset. Since the attractors typically disc
ered on a given time scale are the shallowest among th
available, we expect that arecord in the sequence of nois
kicks will likely suffice to produce a macroscopic event,
feature previously dubbednoise adaptation@21#.

If macroscopic events are induced by noise records, t
numberne(tw) during time t is a log-Poissonprocess@21#.
As a consequence, iftk denotes the time of thekth event, the
quantitiesDk5 ln(tk /tk21) are statistically independent an
have the common distribution Prob(D.x)5exp(2lx), for
some positivel. Second, the average number of eve
grows aŝ ne&(tw)5l ln tw . From Fig. 5 we see that the ac
tual statistics of macroscopic events resembles a log-Poi
statistics in the shape of^ne& ~plot A! and in the fact that the
log-waiting times have very short correlations~plot C! and
an exponential distribution~plot D!.

Crucially, Fig. 5 D shows that the event timestk approxi-
mately make up a geometrical series. Hence, in a system
age tw , most time is spent in the neighborhood of the la
attractor visited. Therefore, the residence time in a neighb
hood of the kth attractor discovered ist r5tk2tk21'tk
5tw , as anticipated in Eq.~4!.
tle
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III. SUMMARY AND CONCLUSION

On short time scales the space resolved dynamics of
TWBCL model can be described in terms of avalanches h
ing, in two spatial dimensions, SOC-like character. O
longer time scales the applied noise pushes the system
gradually more stable attractors. As a consequence, the
gree of phase organizationixi decreases logarithmically in
time. This differs from the sand pile model and is remin
cent of the logarithmic relaxation of the angle of repose@15#
observed in actual sand piles subject to vibration. We h
argued that the aging of the TWBCL model is similar to th
of, e.g., spin glasses in two important respects:~i! the bound-
ary between quasistationary and nonstationary dynamic
given by tw , the time elapsed from the initial quench, an
~ii ! the dynamics is resetable. The coarse grained aging
namics is characterized by a series of ‘‘macroscopic even
leading to gradually deeper attractors. The statistics of th
events is approximately log Poisson, an indication that
events themselves are strongly correlated with records in
history of noise. During noise adaptation@21# the attractors
first visited on a time scaletw typically trap the trajectories
for time tw , as assumed in weakly broken ergodicity@24#.
The same statistics is also present in the dynamics of a p
lation of ‘‘agents’’ evolving in NK fitness landscapes wit
multiple optima@10#. If one views evolution as a search in
fitness landscape with multiple optima, stress-induced hy
mutation@30# following a change of nutrient type or concen
tration appears as the biological counterpart of a reset. T
a range of complex nonstationary phenomena can be q
tatively understood by invoking marginal stability and noi
adaptation as selection mechanisms for metastable attrac
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